03 Types of Learning

Published: 04 Sep 2018 Category: ml-foundations

从四个维度介绍常见机器学习类型,见详细课件

Output Space

从$Y$的维度考虑,不同的输出空间,对应不同的机器学习算法。

Binary Classification

二分类问题,输出空间为$Y={−1, +1}$。常见例子比如:

  • credit approve/disapprove
  • email spam/non-spam
  • patient sick/not sick
  • ad profitable/not profitable

是极其重要的一类问题:

Core and important problem with many tools as building block of other tools.

Multiclass Classification

多分类问题,输出空间为$Y={1,2,\dots, K}$,二分类是$K=2$时候的特例。常见例子比如:

  • coin recognition
  • written digits ⇒ 0, 1, · · · , 9
  • pictures ⇒ apple, orange, strawberry
  • emails ⇒ spam, primary, social, promotion, update
Regression

回归问题,输出空间$Y=R$或者$Y=[lower, upper] \in R$,对应bounded regression。常见的例子比如:

  • patient features ⇒ how many days before recovery
  • company data ⇒ stock price
  • climate data ⇒ temperature

统计学中被广泛研究:

Also core and important with many ‘statistical’ tools as building block of other tools.

Structured Learning

结构化学习,常见例子比如:

  • sentence ⇒ structure (class of each word)(序列标注)
  • protein data ⇒ protein folding
  • speech data ⇒ speech parse tree

Huge multiclass classification problem (structure = hyperclass) without ‘explicit’ class definition.

Data Label

从data label $y_n$的有无、多少、形式划分:

  • supervised: all $y_n$
  • unsupervised: no $y_n$
  • semi-supervised: some $y_n$
  • reinforcement: implicit $y_n$ by goodness
Supervised Learning

Supervised learning: every $x_n$ comes with corresponding $y_n$.

比如二分类、多分类问题,都是典型的监督学习。

Unsupervised Learning

Unsupervised learning: diverse, with possibly very different performance goals.

无监督学习形式也很丰富,常见的比如:

  • clustering
    • ${x_n} ⇒ cluster(x)$
    • unsupervised multiclass classification
    • i.e. articles ⇒ topics
  • density estimation
    • ${x_n} ⇒ density(x)$
    • unsupervised bounded regression
    • traffic reports with location ⇒ dangerous areas
  • outlier detection
    • ${x_n} ⇒ unusual(x)$
    • extreme ‘unsupervised binary classification’
    • i.e. Internet logs ⇒ intrusion alert
Semi-supervised Learning

Semi-supervised learning: leverage unlabeled data to avoid ‘expensive’ labeling.

常见的比如:

  • face images with a few labeled ⇒ face identifier (Facebook)
  • medicine data with a few labeled ⇒ medicine effect predictor

详细解释见Semi-supervised learning

Reinforcement Learning

Reinforcement: learn with ‘partial/implicit information’ (often sequentially).

样本形式$(x_n, y_n, goodness)$常见的比如:

  • (customer, ad choice, ad click earning) ⇒ ad system
  • (cards, strategy, winning amount) ⇒ black jack agent

Different Protocol

不同Protocol对应不同Learning Philosophy:

  • batch: duck feeding
  • online: passive sequential
  • active: question asking (sequentially)(query the $y_n$ of the chosen $x_n$)

对应的训练数据也不相同:

  • batch: all known data
  • online: sequential (passive) data
  • active: strategically-observed data
Batch Learning

一次性从所有已知数据中学习。

Batch supervised multiclass classification: learn from all known data.

  • batch of (email, spam?) ⇒ spam filter
  • batch of (patient, cancer) ⇒ cancer classifier
  • batch of patient data ⇒ group of patients
Online Learning

序列地接受数据,然后更新模型。

Online: hypothesis ‘improves’ through receiving data instances sequentially

比如online spam filter, which sequentially:

  1. observe an email $x_t$
  2. predict spam status with current $g_t(x_t)$
  3. receive ‘desired label’ $y_t$ from user, and then update $g_t$ with $(x_t, y_t)$

PLA can be easily adapted to online protocol.

Active Learning

当模型没有把握的时候,把问题交给用户,从而获取高质量样本。

Active: improve hypothesis with fewer labels (hopefully) by asking questions strategically

Different Input Space

根据输入空间的含义划分。

Concrete Features

Concrete features: each dimension of $X \in R^d$ represents ‘sophisticated physical meaning’.

常见的比如:

  • (size, mass) for coin classification
  • customer info for credit approval
  • patient info for cancer diagnosis
  • often including human intelligence on the task

这些具体特征,有明确的含义,可解释性很强,同时easy for ML

Raw Features

Raw features: often need human or machines to convert to concrete ones.

比如image pixels, speech signal等场景。

Abstract Features

Abstract: again need feature conversion/extraction/construction.

比如一些ID特征:

  • student ID in online tutoring system (KDDCup 2010)
  • advertisement ID in online ad system