Python Collections模块解析
collections
模块提供了一些python
内置数据类型的扩展,比如OrderedDict
,defaultdict
,namedtuple
,deque
,counter
等,简单实用,非常值得学习了解。
import collections
1. OrderedDict
顾名思义,有顺序的词典,次序不再是随机的。普通的dict
不记录插入的顺序,遍历其值的时候是随机的,相反,OrderedDict
记录插入的顺序,在迭代的时候可以看出差异。
遍历
print 'Regular dictionary:'
d = {}
d['a'] = 'A'
d['b'] = 'B'
d['c'] = 'C'
for key, value in d.items():
print key, value
Regular dictionary:
a A
c C
b B
print 'OrderedDict:'
d = collections.OrderedDict()
d['a'] = 'A'
d['b'] = 'B'
d['c'] = 'C'
for key, value in d.items():
print key, value
OrderedDict:
a A
b B
c C
相等比较
比较两个词典是否相等,普通词典比较只看内容,内容相同即判定相等为真;而OrderedDict
同时会考虑顺序,item
被添加的顺序。
print 'dict :',
d1 = {}
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'
d2 = {}
d2['b'] = 'B'
d2['a'] = 'A'
d2['c'] = 'C'
print d1 == d2
dict : True
print 'OrderedDict:',
d1 = collections.OrderedDict()
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'
d2 = collections.OrderedDict()
d2['b'] = 'B'
d2['a'] = 'A'
d2['c'] = 'C'
print d1 == d2
OrderedDict: False
2. defaultdict
普通词典,当你访问没有的键值时,会抛出异常,用defaultdict
,可以预先给定默认值,尤其默认值是需要做累积或聚合操作的时候(比如计数)。defaultdict
接受一个参数default_factory
,该函数负责返回特定的值,可以自定义,也可以用list
(返回[ ]) set(返回set())
或int(返回0)
,直接上例子说的比较清楚。
defaultdict
其实是继承dict
类后。添加了__missing__(key)
方法,用于处理KeyError
异常。
def default_factory():
return 'This is default string value'
d = collections.defaultdict(default_factory)
print d['foo']
This is default string value
这里没有定义d['foo']
,但是可以访问,并返回值。下面看点更厉害的!
list
把default_factory
设定为list
可以方便地把一系列键值对group
起来。默认会返回空的list
,下面例子把相同的键group
在一起。
s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
d = collections.defaultdict(list)
for k, v in s:
d[k].append(v)
# simpler and faster than d.setdefault(k, []).append(v)
d.items()
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
int
计数的时候特别方便,比如要统计每个键值出现多少次。
s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
d = collections.defaultdict(int)
for k, v in s:
d[k] += 1
d.items()
[('blue', 2), ('red', 1), ('yellow', 2)]
s = 'mississippi'
d = collections.defaultdict(int)
for k in s:
d[k] += 1
d.items()
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]
set
和list
功能类似,但返回set()
,剔除了重复元素。
s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
d = collections.defaultdict(set)
for k, v in s:
d[k].add(v)
d.items()
[('blue', {2, 4}), ('red', {1, 3})]
3. namedtuple
默认的tuple
是用数字做索引的,而namedtuple
是可以按名字访问,对fields
很多,或者创建和使用场景离得比较远的情况,比较有用。
bob = ('Bob', 30, 'male')
print 'Representation:', bob
jane = ('Jane', 29, 'female')
print '\nField by index:', jane[0]
print '\nFields by index:'
for p in [ bob, jane ]:
print '%s is a %d year old %s' % p
Representation: ('Bob', 30, 'male')
Field by index: Jane
Fields by index:
Bob is a 30 year old male
Jane is a 29 year old female
由于不同的nametuple
不一样,我们要单独定义,同时按name
访问(依然可以按数字访问)。
# define namedtuple
Person = collections.namedtuple('Person','name age gender')
print 'Type of Person:', type(Person)
bob = Person(name='Bob', age=30, gender='male')
print '\nRepresentation:', bob
bob = Person('Bob',30,'male') # also supported
print 'Representation:', bob
jane = Person(name='Jane', age=29, gender='female')
print '\nField by name:', jane.name
print 'Field by name:', jane[0]
Type of Person: <type 'type'>
Representation: Person(name='Bob', age=30, gender='male')
Representation: Person(name='Bob', age=30, gender='male')
Field by name: Jane
Field by name: Jane
4. deque
即double-ended queue
,双向队列,支持任何一侧的add
和remove
操作。普通的stack
和queue
是deque
的退化形式。
当然,deque
依然是sequence
,所以一些列表类似的操作也是支持的。
d = collections.deque('abcdefg')
print 'Deque:', d
print 'Length:', len(d)
print 'Left end:', d[0]
print 'Right end:', d[-1]
d.remove('c')
print 'remove(c)', d
Deque: deque(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
Length: 7
Left end: a
Right end: g
remove(c) deque(['a', 'b', 'd', 'e', 'f', 'g'])
populating
往队列push
元素
import collections
# Add to the right
d = collections.deque()
d.extend('abcdefg') # append with elements from the iterable
print 'extend :', d
d.append('h')
print 'append :', d
# Add to the left
d = collections.deque()
d.extendleft('abcdefg')
print 'extendleft:', d
d.appendleft('h')
print 'appendleft:', d
extend : deque(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
append : deque(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
extendleft: deque(['g', 'f', 'e', 'd', 'c', 'b', 'a'])
appendleft: deque(['h', 'g', 'f', 'e', 'd', 'c', 'b', 'a'])
consuming
从双向队列pop
元素。
print 'From the right:'
d = collections.deque('abcdefg')
while True:
try:
print d.pop(),
except IndexError:
break
From the right:
g f e d c b a
print '\nFrom the left:'
d = collections.deque('abcdefg')
while True:
try:
print d.popleft(),
except IndexError:
break
From the left:
a b c d e f g
5. Counter
计数器,顾名思义。构造器接受以下形式,实现初始化。
print collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])
print collections.Counter({'a':2, 'b':3, 'c':1})
print collections.Counter(a=2, b=3, c=1)
Counter({'b': 3, 'a': 2, 'c': 1})
Counter({'b': 3, 'a': 2, 'c': 1})
Counter({'b': 3, 'a': 2, 'c': 1})
update
c = collections.Counter()
print 'Initial :', c
c.update('abcdaab')
print 'Sequence:', c
c.update({'a':1,'d':5}) # increse not replace
print 'Dict :', c # add to a and d
Initial : Counter()
Sequence: Counter({'a': 3, 'b': 2, 'c': 1, 'd': 1})
Dict : Counter({'d': 6, 'a': 4, 'b': 2, 'c': 1})
访问
访问时候利用和字典一样的API
。但对于没有的键,不会抛出异常,而是计数为0。
c = collections.Counter('abcdaab')
for letter in 'abcde':
print '%s : %d' % (letter, c[letter])
a : 3
b : 2
c : 1
d : 1
e : 0
elements
产生包含所有元素的一个迭代器。
c = collections.Counter('China')
c['z'] = 0
print c
print list(c.elements())
Counter({'a': 1, 'C': 1, 'i': 1, 'h': 1, 'n': 1, 'z': 0})
['a', 'C', 'i', 'h', 'n']
most_common()
返回前n个最常见的。
c = collections.Counter('abcdaab')
c.most_common(2)
[('a', 3), ('b', 2)]