Ranking Metric

Published: 02 Jan 2019 Category: ltr

评估排序效果时,经常用到几个指标,简单记录之。

AUC

将排序效看做一个二分类问题,计算一系列false positive rate和true positive rate,绘制ROC区间,然后计算曲线下面积得到AUC,细节参考ROC分析

MAP

MAP: Mean average precision. 即计算average precision的均值。

algo-ranking-metric-map

首先计算Precision@k,含义是前k个排序结果中,真实相关的比例。然后取不同的k值,计算average precision;最后在多个排序结果上平均。其中$l_k$是indicator function,当前位置文档相关记为1,否则为0。

NDCG

Discounted cumulative gain (DCG) is a measure of ranking quality. In information retrieval, it is often used to measure effectiveness of web search engine.

简单讲就是计算前k个位置上累计的gain。其计算基于如下两个假设

  • Highly relevant documents are more useful if appearing earlier in search result.
  • Highly relevant documents are more useful than marginally relevant documents which are better than non-relevant documents.

一个排序列表,每个item有一相关性得分,计算其得分,并用位置discount(位置越靠后,gain的discount越重,因为假设相关item排前面更有用)。

algo-ranking-metric-ndcg

最后需要将DCG归一化,做法是获取Ideal DCG(IDCG),然后除以它即可。计算例子见参考文档。

参考