01 The Learning Problem

Published: 30 Aug 2018 Category: ml-foundations

本系列文章为林軒田老师機器學習基石上课程学习笔记,见详细课件

课程主线

  • When Can Machines Learn? (illustrative + technical)
  • Why Can Machines Learn? (theoretical + illustrative)
  • How Can Machines Learn? (technical + practical)
  • How Can Machines Learn Better? (practical + theoretical)

也就是要依次回答:何时可以用机器学习?为何可以机器学习?怎样机器学习?怎样更好地机器学习?构建一幅大Picture!

机器学习应用场景

首先有机器学习不同侧面的定义:

  • Improving some performance measure with experience computed from data
  • Use data to compute hypothesis $g$ that approximates target $f$

Key Essence of Machine Learning:

  • A pattern exists(比如随机数生成不可学习)
  • We cannot pin it down mathematically(否则直接公式表示)
  • We have data on it

思考机器学习的这三个key essence,界定遇到的问题是否可用机器学习方法解决。

以下是一些典型的应用场景:

  • When human cannot program the system manually, like navigating on Mars
  • When human cannot ‘define the solution’ easily, like speech/visual recognition
  • When needing rapid decisions that humans cannot do, like high-frequency trading
  • When needing to be user-oriented in a massive scale, like consumer-targeted marketing

问题的Formulation

首先明确其中五个元素:

  • 定义input space $x \in X$
  • 定义output space $y \in Y$
  • Target function: unknown pattern to be learned
  • Training examples: $D={(x1,y1), (x2,y2),\dots, (xN,yN)}$
  • Hypothesis: skill with hopefully good performance

最终机器学习Formulation为:

利用target function生成的training examples数据,通过learning algorithm从hypothesis set里找出 $g$ 使其尽可能接近target function $f$.

从上面可以看出一个假设,就是训练数据集$D$是从target function来的,为保证学习效果,$D$需要足够representative。