01 The Learning Problem
本系列文章为林軒田老师機器學習基石上课程学习笔记,见详细课件。
课程主线
- When Can Machines Learn? (illustrative + technical)
- Why Can Machines Learn? (theoretical + illustrative)
- How Can Machines Learn? (technical + practical)
- How Can Machines Learn Better? (practical + theoretical)
也就是要依次回答:何时可以用机器学习?为何可以机器学习?怎样机器学习?怎样更好地机器学习?构建一幅大Picture!
机器学习应用场景
首先有机器学习不同侧面的定义:
- Improving some performance measure with experience computed from data
- Use data to compute hypothesis $g$ that approximates target $f$
Key Essence of Machine Learning:
- A pattern exists(比如随机数生成不可学习)
- We cannot pin it down mathematically(否则直接公式表示)
- We have data on it
思考机器学习的这三个key essence,界定遇到的问题是否可用机器学习方法解决。
以下是一些典型的应用场景:
- When human cannot program the system manually, like navigating on Mars
- When human cannot ‘define the solution’ easily, like speech/visual recognition
- When needing rapid decisions that humans cannot do, like high-frequency trading
- When needing to be user-oriented in a massive scale, like consumer-targeted marketing
问题的Formulation
首先明确其中五个元素:
- 定义input space $x \in X$
- 定义output space $y \in Y$
- Target function: unknown pattern to be learned
- Training examples: $D={(x1,y1), (x2,y2),\dots, (xN,yN)}$
- Hypothesis: skill with hopefully good performance
最终机器学习Formulation为:
利用target function生成的training examples数据,通过learning algorithm从hypothesis set里找出 $g$ 使其尽可能接近target function $f$.
从上面可以看出一个假设,就是训练数据集$D$是从target function来的,为保证学习效果,$D$需要足够representative。